f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qtc

1

NAG C Library Function Document

nag_ztrexc (f08qtc)

Purpose

nag_ztrexc (f08qtc) reorders the Schur factorization of a complex general matrix.

2

Specification

void nag_ztrexc (Nag_OrderType order, Nag_ComputeQType compq, Integer n,

3

Complex t[], Integer pdt, Complex q[], Integer pdq, Integer ifst, Integer ilst,
NagError *fail)

Description

nag_ztrexc (f08qtc) reorders the Schur factorization of a complex general matrix A = QT'Q", so that the
diagonal element of 7' with row index ifst is moved to row ilst.

The reordered Schur form 7' is computed by a unitary similarity transformation: 7' = Z”TZ. Optionally
the updated matrix Q of Schur vectors is computed as Q = QZ, giving A = QTQ".

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

compq — Nag ComputeQType Input
On entry: indicates whether the matrix @@ of Schur vectors is to be updated, as follows:

if compq = Nag_UpdateSchur, the matrix () of Schur vectors is updated;

if compq = Nag_NotQ, no Schur vectors are updated.
Constraint: compq = Nag_UpdateSchur or Nag_NotQ.

n — Integer Input
On entry: n, the order of the matrix 7.

Constraint: n > 0.

t[dim] — Complex Input/Output
Note: the dimension, dim, of the array t must be at least max(1, pdt x n).

If order = Nag_ColMajor, the (7, j)th element of the matrix 7T is stored in t[(j — 1) x pdt+ i — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix T is stored in t[(i — 1) x pdt + j — 1].

On entry: the n by n upper triangular matrix 7', as returned by nag_zhseqr (f08psc).

[NP3645/7] f08gtc. 1

f08qtc NAG C Library Manual

On exit: t is overwritten by the updated matrix 7.

5: pdt — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array t.

Constraint: pdt > max(1,n).

6: q[dim] — Complex Input/Output

Note: the dimension, dim, of the array q must be at least
max(1, pdq x n) when compq = Nag_UpdateSchur;
1 when compq = Nag_NotQ.

If order = Nag_ColMajor, the (7, j)th element of the matrix @ is stored in q[(j — 1) x pdq + i — 1]
and if order = Nag RowMajor, the (i,j)th element of the matrix @ is stored in

q[(i — 1) x pdq +j — 1].

On entry: if compq = Nag_UpdateSchur, q must contain the n by n unitary matrix) of Schur
vectors.

On exit: if compq = Nag_UpdateSchur, q contains the updated matrix of Schur vectors.

q is not referenced if compq = Nag_NotQ.

7: pdq — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array (.

Constraints:

if compq = Nag_UpdateSchur, pdq > max(1,n);
if compq = Nag NotQ, pdq > 1.

8: ifst — Integer Input
9: ilst — Integer Input

On entry: ifst and ilst must specify the reordering of the diagonal elements of 7. The element with
row index ifst is moved to row ilst by a sequence of exchanges between adjacent elements.

Constraint: 1 < ifst <n and 1 <ilst < n.

10: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pdt = (value).
Constraint: pdt > 0.

On entry, pdq = (value).
Constraint: pdq > 0.

NE_INT 2

On entry, pdt = (value), n = (value).
Constraint: pdt > max(1,n).

f08qtc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qtc

NE_INT 3
On entry, n = (value), ifst = (value), ilst = (value).
Constraint: 1 < ifst <n and 1 <ilst < n.
NE_ENUM_INT 2

On entry, compq = (value), n = (value), pdq = (value).
Constraint: if compq = Nag_UpdateSchur, pdq > max(1,n);
if compq = Nag_NotQ, pdq > 1.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed matrix T is exactly similar to a matrix T+ E, where
1E]l, = OIT],
and € is the machine precision.

The values of the eigenvalues are never changed by the re-ordering.

8 Further Comments

The total number of real floating-point operations is approximately 20n7 if compq = Nag NotQ, and 40nr
if compq = Nag_UpdateSchur, where r = |ifst — ilst|.

The real analogue of this function is nag_dtrexc (f08qfc).

9 Example

To reorder the Schur factorization of the matrix 71" so that element ¢;; is moved to t,4, Where

—6.00 —7.00¢ 036 —-0.36: —0.194+0.48 0.88 —0.25¢
0.00 4+ 0.00¢ —5.00+2.00: —0.03 —0.72¢ —0.2340.13%
0.00 +0.00¢ 0.00 + 0.00¢ 8.00 —1.00z 0.94 4 0.53:
0.0040.00¢ 0.00+0.00: 0.00+0.00: 3.00 —4.00¢

T:

9.1 Program Text

/* nag_ztrexc (f08gtc) Example Program.
* Copyright 2001 Numerical Algorithms Group.
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

[NP3645/7] f08qtc.3

f08qtc NAG C Library Manual

int main(void)
{
/* Scalars */
Integer i, ifst, ilst, j, n, pdg, pdt;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *qg=0, *t=0;

#ifdef NAG_COLUMN_MAJOR
#define T(I,J) t[(J-1)*pdt + I - 1]
order = Nag_ColMajor;

#else

#define T(I,J) t[(I-1)*pdt + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08gtc Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("$*[*\n] ");

Vscanf ("$1d%*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pdg = 1;

pdt = n;
#else

pdg = 1;

pdt = n;
#endif

/* Allocate memory */
if (!'(g = NAG_ALLOC(1 * 1, Complex)) ||
1 (t = NAG_ALLOC(n * n, Complex)))
{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}

/* Read T from data file x/
for (i = 1; 1 <= n; ++1)

for (j = 1; j <= n; ++3)
Vscanf (" (%1f , %1f)", &T(i,j).re, &T(i,7j).im);
n]
dsx["\n] ", &ifst, &ilst);
/* Reorder the Schur factorization T =*/

f08gtc(order, Nag_NotQ, n, t, pdt, g, pdqg, ifst, ilst, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from f08gtc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print reordered Schur form */

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
t, pdt, Nag BracketForm, "%7.4f",
"Reordered Schur form", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:

if (q) NAG_FREE(q);

f08qtc.4

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qtc

if (t) NAG_FREE (t);

return exit_status;

3

9.2 Program Data

f08gtc Example Program Data

4 :Value of N
(-6.00,-7.00) (0.36,-0.36) (-0.19, 0.48) (0.88,-0.25)

(0.00, 0.00) (-5.00, 2.00) (-0.03,-0.72) (-0.23, 0.13)

(0.00, 0.00) (0.00, 0.00) (8.00,-1.00) (0.94, 0.53)

(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (3.00,-4.00) :End of matrix T
1 4 :Values of IFST and ILST

9.3 Program Results

f08gtc Example Program Results
Reordered Schur form

1
5.0000, 2.0000)
0.0000, 0.0000)
0.0000, 0.0000)
0.0000, 0.0000)

2 3
(-0.1574, 0.7143) 0.1781,-0.1913) (O.
(8.0000,-1.0000) 1.0742, 0.1447) (0.2515,-0.3397
(0.)) (0.2264, 0.8962
(0.)) (-6.0000,-7.0000

0000, 0.0000
0000, 0.0000

3.0000,-4.0000

4

3950, 0.3861)

)

)

0.0000, 0.0000)

—~ e~~~

[NP3645/7] 108qtc.5 (last)

	f08qtc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	compq
	n
	t
	pdt
	q
	pdq
	ifst
	ilst
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ENUM_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

