
NAG C Library Function Document

nag_ztrexc (f08qtc)

1 Purpose

nag_ztrexc (f08qtc) reorders the Schur factorization of a complex general matrix.

2 Specification

void nag_ztrexc (Nag_OrderType order, Nag_ComputeQType compq, Integer n,
Complex t[], Integer pdt, Complex q[], Integer pdq, Integer ifst, Integer ilst,
NagError *fail)

3 Description

nag_ztrexc (f08qtc) reorders the Schur factorization of a complex general matrix A ¼ QTQH , so that the
diagonal element of T with row index ifst is moved to row ilst.

The reordered Schur form ~TT is computed by a unitary similarity transformation: ~TT ¼ ZHTZ. Optionally

the updated matrix ~QQ of Schur vectors is computed as ~QQ ¼ QZ, giving A ¼ ~QQ~TT ~QQH .

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: compq – Nag_ComputeQType Input

On entry: indicates whether the matrix Q of Schur vectors is to be updated, as follows:

if compq ¼ Nag UpdateSchur, the matrix Q of Schur vectors is updated;

if compq ¼ Nag NotQ, no Schur vectors are updated.

Constraint: compq ¼ Nag UpdateSchur or Nag NotQ.

3: n – Integer Input

On entry: n, the order of the matrix T .

Constraint: n � 0.

4: t½dim� – Complex Input/Output

Note: the dimension, dim, of the array t must be at least maxð1; pdt� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix T is stored in t½ðj� 1Þ � pdtþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix T is stored in t½ði� 1Þ � pdtþ j� 1�.
On entry: the n by n upper triangular matrix T , as returned by nag_zhseqr (f08psc).

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08qtc

[NP3645/7] f08qtc.1

On exit: t is overwritten by the updated matrix ~TT .

5: pdt – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array t.

Constraint: pdt � maxð1;nÞ.

6: q½dim� – Complex Input/Output

Note: the dimension, dim, of the array q must be at least

maxð1; pdq� nÞ when compq ¼ Nag UpdateSchur;

1 when compq ¼ Nag NotQ.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix Q is stored in q½ðj� 1Þ � pdqþ i� 1�
and if order ¼ Nag RowMajor, the ði; jÞth e lement of the matr ix Q i s s tored in

q½ði� 1Þ � pdqþ j� 1�.

On entry: if compq ¼ Nag UpdateSchur, q must contain the n by n unitary matrix Q of Schur
vectors.

On exit: if compq ¼ Nag UpdateSchur, q contains the updated matrix of Schur vectors.

q is not referenced if compq ¼ Nag NotQ.

7: pdq – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array q.

Constraints:

if compq ¼ Nag UpdateSchur, pdq � maxð1;nÞ;
if compq ¼ Nag NotQ, pdq � 1.

8: ifst – Integer Input

9: ilst – Integer Input

On entry: ifst and ilst must specify the reordering of the diagonal elements of T . The element with
row index ifst is moved to row ilst by a sequence of exchanges between adjacent elements.

Constraint: 1 � ifst � n and 1 � ilst � n.

10: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pdt ¼ hvaluei.
Constraint: pdt > 0.

On entry, pdq ¼ hvaluei.
Constraint: pdq > 0.

NE_INT_2

On entry, pdt ¼ hvaluei, n ¼ hvaluei.
Constraint: pdt � maxð1;nÞ.

f08qtc NAG C Library Manual

f08qtc.2 [NP3645/7]

NE_INT_3

On entry, n = hvaluei, ifst = hvaluei, ilst = hvaluei.
Constraint: 1 � ifst � n and 1 � ilst � n.

NE_ENUM_INT_2

On entry, compq ¼ hvaluei, n ¼ hvaluei, pdq ¼ hvaluei.
Constraint: if compq ¼ Nag UpdateSchur, pdq � maxð1;nÞ;
if compq ¼ Nag NotQ, pdq � 1.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed matrix ~TT is exactly similar to a matrix T þ E, where

kEk2 ¼ Oð�ÞkTk2;

and � is the machine precision.

The values of the eigenvalues are never changed by the re-ordering.

8 Further Comments

The total number of real floating-point operations is approximately 20nr if compq ¼ Nag NotQ, and 40nr
if compq ¼ Nag UpdateSchur, where r ¼ jifst� ilstj.
The real analogue of this function is nag_dtrexc (f08qfc).

9 Example

To reorder the Schur factorization of the matrix T so that element t11 is moved to t44, where

T ¼

�6:00� 7:00i 0:36� 0:36i �0:19þ 0:48i 0:88� 0:25i
0:00þ 0:00i �5:00þ 2:00i �0:03� 0:72i �0:23þ 0:13i
0:00þ 0:00i 0:00þ 0:00i 8:00� 1:00i 0:94þ 0:53i
0:00þ 0:00i 0:00þ 0:00i 0:00þ 0:00i 3:00� 4:00i

1
CCA

0
BB@ :

9.1 Program Text

/* nag_ztrexc (f08qtc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08qtc

[NP3645/7] f08qtc.3

int main(void)
{

/* Scalars */
Integer i, ifst, ilst, j, n, pdq, pdt;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
Complex *q=0, *t=0;

#ifdef NAG_COLUMN_MAJOR
#define T(I,J) t[(J-1)*pdt + I - 1]

order = Nag_ColMajor;
#else
#define T(I,J) t[(I-1)*pdt + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08qtc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);

#ifdef NAG_COLUMN_MAJOR
pdq = 1;
pdt = n;

#else
pdq = 1;
pdt = n;

#endif

/* Allocate memory */
if (!(q = NAG_ALLOC(1 * 1, Complex)) ||

!(t = NAG_ALLOC(n * n, Complex)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read T from data file */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf(" (%lf , %lf)", &T(i,j).re, &T(i,j).im);
}

Vscanf("%*[^\n] ");
Vscanf("%ld%ld%*[^\n] ", &ifst, &ilst);

/* Reorder the Schur factorization T */
f08qtc(order, Nag_NotQ, n, t, pdt, q, pdq, ifst, ilst, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08qtc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print reordered Schur form */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,

t, pdt, Nag_BracketForm, "%7.4f",
"Reordered Schur form", Nag_IntegerLabels,
0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (q) NAG_FREE(q);

f08qtc NAG C Library Manual

f08qtc.4 [NP3645/7]

if (t) NAG_FREE(t);

return exit_status;
}

9.2 Program Data

f08qtc Example Program Data
4 :Value of N

(-6.00,-7.00) (0.36,-0.36) (-0.19, 0.48) (0.88,-0.25)
(0.00, 0.00) (-5.00, 2.00) (-0.03,-0.72) (-0.23, 0.13)
(0.00, 0.00) (0.00, 0.00) (8.00,-1.00) (0.94, 0.53)
(0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (3.00,-4.00) :End of matrix T
1 4 :Values of IFST and ILST

9.3 Program Results

f08qtc Example Program Results

Reordered Schur form
1 2 3 4

1 (-5.0000, 2.0000) (-0.1574, 0.7143) (0.1781,-0.1913) (0.3950, 0.3861)
2 (0.0000, 0.0000) (8.0000,-1.0000) (1.0742, 0.1447) (0.2515,-0.3397)
3 (0.0000, 0.0000) (0.0000, 0.0000) (3.0000,-4.0000) (0.2264, 0.8962)
4 (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (-6.0000,-7.0000)

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08qtc

[NP3645/7] f08qtc.5 (last)

	f08qtc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	compq
	n
	t
	pdt
	q
	pdq
	ifst
	ilst
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ENUM_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

